Study of Cronin effect and nuclear modification of strange particles in d-Au and Au-Au collisions at 200 GeV in PHENIX

Dmitri Kotchetkov (*University of California at Riverside*)

for PHENIX Collaboration

Strangeness at PHENIX

Motivations:

- ✓ Strange particles as a tool to quantify the effects of medium modification
- ✓ Strangeness observables to look into initial (gluon saturation) or final state (quark recombination, flow)
- ✓ Effects of strangeness on energy loss

PHENIX ongoing analyses:

single
$$K^+, K^-$$

$$K^0_S \to \pi^+ \pi^- \qquad \Lambda \to p \pi^- \qquad \overline{\Lambda} \to p^- \pi^+$$

$$\phi \to K^+ K^- \qquad \phi \to e^+ e^-$$

Nuclear enhancement and suppression

$$R_{CP} = \frac{\text{Yield(central)} / < N_{coll}(\text{central}) >}{\text{Yield(peripheral)} / < N_{coll}(\text{peripheral}) >}$$

3 0-20%/60-88.5% d+Au π++π-

Parallel Session talk
"π/K/p production and
Cronin effect from p-p,
d-Au and Au-Au
collisions at 200 GeV"
by Felix Matathias

PHENIX d+Au PRELIMINARY

Mesons vs. baryons or heavier vs. lighter?

In central Au-Au collisions:

- ✓ No suppression of protons at $P_t > 2.0$ GeV
- ✓ Suppression of π^0 up to measurement limits (~10 GeV)

In central d-Au collisions:

✓ Nuclear enhancement (Cronin) is larger for protons

How strangeness affects nuclear modification?

- ✓ Effect of strange quarks on R_{cp}
- ✓ Strange baryons and antibaryons vs. strange mesons (number of quarks)
- ✓ Mass dependence of R_{cp} among strange particles

Detectors

Hadron's time of flight

In Time of flight Counters (TOF): In Electromagnetic Calorimeter (EMC):

time of flight resolution:

TOF: 115 ps

EMC: 700 ps (average) function of energy of a cluster

A reconstruction

- √ high asymmetry of decay
- ✓ mean P of π from Λ decay equals 0.3 GeV
- ✓ detect protons in high resolution TOF (up to 3 GeV)
- ✓ reconstruct protons into pairs with any hadron detected either in TOF or EMC
- event mixing technique to build a combinatorial background

$p\pi$ invariant mass from d-Au collisions

counts/2.5(MeV/ c^2)

invariant mass (GeV/c²)

From 63 x 10⁶ minimum bias d-Au collisions:

Λ:

Counts = 24395 + /-373(stat)

Λ–bar:

Counts = 9744 + /-229(stat)

$$\frac{\Lambda:}{S/B} = 1/5$$
 $\frac{S}{\sqrt{S+B}} = 65$

$$\Lambda$$
-bar: $\frac{S}{S/B} = 1/4$ $\frac{S}{\sqrt{S+B}} = 43$

counts/2.5(MeV/c²)

invariant mass (GeV/c²)

pπ invariant mass from Au-Au collisions

$$\frac{\Lambda:}{S/B} = 1/33 \qquad \frac{S}{\sqrt{S+B}} = 43$$

$$\Lambda$$
-bar: S/B = 1/33

$$\frac{\mathsf{S}}{\sqrt{\mathsf{S}+\mathsf{B}}}=38$$

From 20 x 10⁶ minimum bias Au-Au collisions:

Λ:

Counts = 62786 + /-1580(stat)

Λ–bar:

Counts = 48377 + /-1358(stat)

counts /5(MeV/c²)

Detector acceptance normalization

- ✓ Single particle generator (K_S^0 , Λ , e t.c.)
- ✓ Simulation of PHENIX detector response
- ✓ Extract particle yields as for real data

Λ and Λ -bar P_t spectra in d-Au Minimum bias collisions at 200 GeV

Poster Strangeness 5 Arkadij Taranenko

Only statistical errors are shown

• reconstruction

- $\checkmark \phi \rightarrow K+K- channel$
- √ identify kaons either in TOF or EMC
- event mixing technique to build a combinatorial background

K⁺K⁻ invariant mass from Au-Au collisions

counts/1(MeV/c²) $\frac{\chi^2/\text{ ndf}}{54.83/37}$

From 19 x 10⁶ minimum bias Au-Au collisions:

 ϕ : Counts = 5560+/-240(stat)

S/B = 1/8.5

Posters:
Strangeness 14
by Charles Maguire

Flow 7 by Debsankar Mukhopadhyay

$$\phi \rightarrow K^+K^-$$

Minimum bias events $dN/dy=1.34\pm0.09(stat)\pm0.20(syst)$ $T=366\pm11(stat)\pm18(syst)$ MeV

0-10% on correct scale, others offset by factors of 10

Parallel Session talk "Light vector mesons (φ) in d-Au collisions in PHENIX" by Richard Seto

Cronin effect in d-Au collisions

R_{cp} of identified hadrons (0-20% d-Au central collisions) at 200 GeV

Only statistical errors shown for Λ

R_{cp} of identified hadrons (20-40% d-Au central collisions) at 200 GeV

 Λ 's R_{cp} modification is very similar to one of the proton

R_{cp} of identified hadrons (40-60% d-Au central collisions) at 200 GeV

Mass of Λ is close to one of a proton

Nuclear modification in Au-Au collisions

R_{cp} of identified hadrons (0-10% Au-Au central collisions) at 200 GeV

R_{cp} of ϕ (0-10% Au-Au central collisions) at 200 GeV

Mass of ϕ is close to one of a proton

Summary

Are differences in R_{cp} attributable to mass or quark number?

- ✓ There is no evidence for mass dependence of R_{cp}
- ✓ Strangeness seems to have no effect on R_{cp}
- ✓ There is a difference in R_{cp} for mesons and baryons (see STAR results of Λ 's R_{cp} in Au-Au)

Outlook

- ✓ R_{cp} results from K^0_S and from Λ (Au-Au)
- ✓ Analysis of multi-strange baryons (Ξ^0 , Ξ^+ , Ξ^- , Ω^- and others)

Extracted K⁰_S signal

From 48.85×10^6 minimum bias p-p collisions: Counts = 16630 + /-605(stat) 62.20×10^6 minimum bias d-Au collisions: Counts = 116397 + /-2627(stat)